QPSchur: A dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming

نویسندگان

  • Roscoe A. Bartlett
  • Lorenz T. Biegler
چکیده

We describe an active-set, dual-feasible Schur-complement method for quadratic programming (QP) with positive definite Hessians. The formulation of the QP being solved is general and flexible, and is appropriate for many different application areas. Moreover, the specialized structure of the QP is abstracted away behind a fixed KKT matrix called Ko and other problem matrices, which naturally leads to an object-oriented software implementation. Updates to the working set of active inequality constraints are facilitated using a dense Schur complement, which we expect to remain small. Here, the dual Schur complement method requires the projected Hessian to be positive definite for every working set considered by the algorithm. Therefore, this method is not appropriate for all QPs. While the Schur complement approach to linear algebra is very flexible with respect to allowing exploitation of problem structure, it is not as numerically stable as approaches using a QR factorization. However, we show that the use of fixed-precision iterative refinement helps to dramatically improve the numerical stability of this Schur complement algorithm. The use of the objectoriented QP solver implementation is demonstrated on two different application areas with specializations in each area; large-scale model predictive control (MPC) and reduced-space successive quadratic programming (with several different representations for the reduced Hessian). These results demonstrate that the QP solver can exploit application-specific structure in a computationally efficient and fairly robust manner as compared to other QP solver implementations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems

We propose a primal-dual path-following Mehrotra-type predictor-corrector method for solving convex quadratic semidefinite programming (QSDP) problems. For the special case when the quadratic term has the form 1 2 X •(UXU), we compute the search direction at each iteration from the Schur complement equation. We are able to solve the Schur complement equation efficiently via the preconditioned s...

متن کامل

A Schur-complement Method for Sparse Quadratic Programming

In applying active-set methods to sparse quadratic programs, it is desirable to utilize existing sparse-matrix techniques. We describe a quadratic programming method based on the classical Schur complement. Its key feature is that much of the linear algebraic work associated with an entire sequence of iterations involves a fixed sparse factorization. Updates are performed at every iteration to ...

متن کامل

A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization

We present a primal-dual active-set framework for solving large-scale convex quadratic optimization problems (QPs). In contrast to classical active-set methods, our framework allows for multiple simultaneous changes in the active-set estimate, which often leads to rapid identification of the optimal active-set regardless of the initial estimate. The iterates of our framework are the active-set ...

متن کامل

A dual method for solving general convex quadratic programs

In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006